If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+16a-57=0
a = 1; b = 16; c = -57;
Δ = b2-4ac
Δ = 162-4·1·(-57)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-22}{2*1}=\frac{-38}{2} =-19 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+22}{2*1}=\frac{6}{2} =3 $
| 2−–m=–3 | | 3(x-3)=2x+x-9 | | 2(3x+4)=18+4 | | 26y-14y-5=31 | | -80=7c+3c | | 4x-(-11)=27 | | 8x+11=9x+3 | | 3(x-3)=2x+x-12x | | 3x+5x=500 | | 13d-8d+2d-6d-1=40 | | n-5.85=5.25 | | 11(x-6)+11(x-6)=4(x+3) | | 110+18x-2=180 | | -16=-8(4+a) | | x-123=-123 | | 9x28=13x-14 | | 24t=23.4(t=0.3) | | -5x+-13=9x+8 | | -3.50+10=1.75x-11 | | i/2=-7 | | -3=10r-7r | | 16–5a+2a–1=41–a | | y=6(3)+-5 | | 3.5x(-20)=2.4x+13 | | |6x+9|=39 | | -2x=2.1 | | 3k-3k+2k+4=16 | | 3.75(-7p+1)-1.5(9p-13)=540 | | 2x–5.2=–3.7 | | -176=9v-5 | | -19-9q=-10q | | 8x+4(2x−3)=4(6x+4)−4 |